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Regularizing by Giblbs Algorithm

Gibbs Algorithm

Motivation

Now Here




Generic Optimization Problem

As a motivation, we bring up a generic randomized
opftimization problem, where

e X € X random data instance X as an element
of set X

e c € Cis solufion ¢ as element of solution set C

e R(c, X) is cost function of solution ¢ given in a
data instance X



Regularizing by Giblbs Algorithm

e Recall possible standard approach (ERM):

data input cost optimization optimal solution

X R(Cv X) c*




Regularizing by Giblbs Algorithm

e Recall possible standard approach (ERM):

data input cost optimization optimal solution
p > > p !
X R(Cv X) C

e The approach we focus on:

data input posterior distribution sampling ¢ from
X
X pa(elx) T pp(clX)

Regularizer is inverse temperature g — controls
“width”



Regularizing by Giblbs Algorithm

e We search for stochastic
approximation:

X — ¢~ p(c|X)



Regularizing by Giblbs Algorithm

e We search for stochastic
approximation:

X — ¢~ p(c|X)

e Define a Gibbs posterior
over solutions:

4

ps(c|X) o exp(—f - R(c, X))

ps(-|X")

copt(X)

1”(_‘1\7//) |



Motivation for Giblbs Distribution

o Represents the family of maximum entropy (1)
distributions for the fixed expected costs:

p(clX) € arg max  H(p)
p(c[X):
E[R(c,X)]=r

¢ Minimizes the expected risk, regularized by the
input-output mutual information (2):

. 1
pa(clX) € arg min (E[R(c, X)] + Bzr(c,X))



Large Disordered Systems

Gibbs Algorithm
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Motivation
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Free Energy

Now
p(c]X) = exp(—ﬁ - R(e, X) — ]-"(X)),

where the following is Helmholtz free energy:
F(B,X) =log Z(8,X),

here Z (3, X) is partition function:

Z(8,X) = exp(=BR(c, X))

ceC



Free Energy

Now
p(c]X) = exp(—ﬁ - R(e, X) — ]-"(X)),

where the following is Helmholtz free energy:
F(B,X) =log Z(8,X),

here Z (3, X) is partition function:

Z(8,X) = exp(=BR(c, X))

ceC

Issue: Understanding the stochastic behavior of
log Z (3, X) is known to be hard.



Statistical Mechanics of Free Energy

e Empirical quantity: log Z (5, X)
¢ Annealed average (easy but “wrong”):

e Quenched average (hard but “correct”):

F(B,X) =Ex[log Z(8, X)]

Our goal is to asymptotically study its quenched
approximation.

lim ExlogZ(B,X) =7

size—o0



“In Vitro” Combinatorial Problem

Large Disordered Systems

Helmholtz Free Energy
Motivation

lim Elog Z(8,X) ="
n—oc
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“In Vitro” Combinatorial Problem:

“Sparse” Minimum Bisection — |

e Given: complete graph with random edge
weights

G = <V7 E7 X>7 X = {Wz}zGE



“In Vitro” Combinatorial Problem:

“Sparse” Minimum Bisection — |

e Given: complete graph with random edge
weights

G:(V7E7X)7 X:{VI/Z}ZGE
¢ Find: two subgraphs
C:(Ul,Uz), U1|_|U2 QV

of a small size d (“sparsity”)



“In Vitro” Combinatorial Problem:

“Sparse” Minimum Bisection — |

e Given: complete graph with random edge
weights

G:<V7E7X)7 X:{VI/Z}ZGE
¢ Find: two subgraphs
C = (Ul,Uz), U1|_|U2 _’C,_V

of a small size d ("sparsity”)
e Such that the total edge cost between them is
minimal
arg min R(c, X) = arg mln Z Wi

c=(U1,U2) c=(Uy,U:
zEedges(c



“In Vitro” Combinatorial Problem:
“Sparse” Minimum Bisection — ||

o
S complete weighted
d=3 graph G = (V,E, X)
° °

St g
° (-]
edges belonging to

Sn(c) bisection ¢ = (Uy, Us)
°



“In Vitro” Combinatorial Problem:
“Sparse” Minimum Bisection — ||

°
" I complete weighted
d=3 graph G = (V, B, X)
P °
Uy jos, o Us
L .
ol .
. .
o ! ' °
L) "
. ¥
“-" "-"
o °
S edges belonging to
L (r) bisection ¢ = (U1, Us)
o
o
°
°
°

lim Exlog Z(3,X) = ?
n—oo



Free Energy: Short Overview - |

o Notorious difficulty of computing Elog ~ is related
(1)(2) to dependencies in solutions:

Cov(R(c, X), R(¢", X)) # 0.

e INn our case, the de- .
pendencies existbutare .,
smaill.

e Large correlations require additional work
(conjecture in appendix).



Free Energy: Short Overview - |

e Derrida (1) established Random Energy Model —
a model where solution costs are independent;

n—oo n Bvlog2 B > 24/log?2.

e Vannimenus and Mézard (2) solved free energy
for Traveling Salesman Problem: small
dependencies.




Main Result

Large Disordered Systems
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Main Result: Setting

e N is # of solufion
parameters:

N = |edges(Uy, Us)|

-
-

2 ==
3



Main Result: Setting

e N is # of solufion
parameters:

N = ledges(U1, Us)|

e m is nuMmber of solutions:

m = |C|

2 ==
3



Main Result: Setting

e N is # of solufion
parameters: Uy

N = ledges(U1, Us)| N
e m iS numMber of solutions:
m = |C|

e require to be “parameter
rich”:

logm = o(N)



Main Result

Main theorem: free energy asymptotics

Assume:
e Sparse MBP on a complete graph
e Edge weights mutually independent within any
given ¢
e Weights mean p and variance o2, MGF < oo
Then:

Y

<
n—o0 logm Bg\/i >

E[log Z] + Buyv/Nlogm _{ 1+ 22, 4
i

provided logn < d < \/@



Tuning g for Approximation

Gibbs Algorithm
Motivation

X —

— C

Large Disordered Systems

Helmholtz Free Energy
Motivation

lim Elog Z(8,X) ="
n—o0

|
Y Tuning 3 )
Motivation
Now Here

‘In Vitro’ Problem:
> SMBP

_Zem arg  min Wi
ga:(z/,‘zmz ‘

1
Main Result Y

o Elogz] _ [ 1+ 82, p<

L ‘{ LAV

n—oo

Maximize Expected Log-Posterior Agreement (eLPA)

7\

Minimize Averogg Gibbs Risk




Role of 5 in Posterior Distribution

e Recall our approach:

data input
X

posterior distribution
pp(c[X)

sampling ¢ from
ps(clX)




pg(c|X)

Role of 5 in Posterior Distribution

e Recall our approach:

data input posterior distribution sampling ¢ from

X pp(c|X) pp(c|X)

Example (Giblbs Posterior)

exp(—ﬁR(qX))
Zaec exp(—ﬁR(é, X))

B /‘\ 1 Picture: 5 is decreasing.

solutions ¢

pp(elX) =




Role of 5 in Posterior Distribution

e Recall our approach:

data input posterior distribution sampling ¢ from
X
X palelx) T ps(c|X)

Example (Glbbs Posterior)

exp(—ﬁR(qX))
Zaec exp(—ﬁR(é, X))

/\ | Picture: g is decreasing.

solutions ¢

pg(c|X)
optimal ¢+

| | palelx) =




Role of 5 in Posterior Distribution

e Recall our approach:

data input posterior distribution sampling ¢ from
X
X palelx) T ps(c|X)

Example (Glbbs Posterior)

exp(—ﬁR(qX))
Zaec exp(—ﬁR(é, X))

| Picture: g is decreasing.

1 paleX) =

pg(c|X)
optimal ¢+

T
\
\
\
!
!
|
!
!
|
!

/\

| i |
solutions ¢




Tuning the p-Regularization

e Recall our approach:

data input posterior distribution sampling ¢ from

X pp(c|X) : pp(c|X)

e Q: how to fune § (the regularizer)?
A: maximize expected log-posterior agreement
(eLPA) (T):

f* = arg IIlBELXEX/7X// [log Zpﬂ(c|X’)p6(c|Xu>

cLPA(3)




elLPA(S): Intuition

e |t stabilizes solution output:
B = 0.25: underfitting B = 2.8: near-optimal B = 19.5: overfitting

ps(clX)

solutions

solutions

Ex log(conv)

e eLPA =~ cross entropy;



Computing and Maximizing eLPA(5)

Large Disordered Systems
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Theorem: eLPA(B) Asymptotics

e elLPA can be rewritten:
Ex xr 10gZPB(C’X/>Pﬁ(C’XH) =

Ex: xnlog Z(B8, X"+ X")
) Thm fro?wq above .
—Ex/log Z (B, X")

) Thm fro?nrobove ’
— Exvlog Z(8, X")

Thm from above




Theorem: eLPA(B) Asymptotics
Theorem: elLPA

e Previous setfing and additive -noise on edges;
e Let v = 6/0 be noise-to-signal ratio.
Then, eLPA satisfies

eLPA(X', X")
naoo  logm n(8)
B 3. V2
S\,BO’)zy R ﬂo’ < \/44»2?
n(B) = § BoVaV/A+ 7 = (B0 (1+%) — 1, < o< e
Bov2(VA+272 —2(/1+72) +1, V2 < Bo

:

1+72



Theorem: eLPA(B) Asymptotics

e Plotf: ePLA has a clear maximum:

,_

more noise

=1.0
less beta 7

~=0.5
vy =0.25
0.05

04 : less noise

N greafer beta ~=0.
0.2 : 2 noise-to-signal
) : H ratio
( :

10 i 102

0.6

=

EX Iog(score)

« Theorem: Optimal eLPA-temperature
Optimal eLPA-temperature is provided by:

- V2 + 2
BiLpa = arg mgxeLPA(ﬂ) = ot



Expected Gibbs Risk Minimization

Tuning 3

palelX)

Ex log(conv)

Main Result
i EllogZ] _ { 1482 p< 2
iR

bove,  f2 L

ore)

Ex log(sc

i\ Bipa = arg maxcLPA(8)
8

NeEz

=+

X

Minimize Averogg Gibbs Risk

Now Here




Minimizing Expected Gibls Risk

e Since the expected Giblbs risk equals

0
Eps (e x [R(e, X)) = ~ 50X log Z(8, X)



Minimizing Expected Gibls Risk

e Since the expected Giblbs risk equals
0
IEp[3(c|X),X [R(C7 X)] = _%EX IOg Z(ﬁu X)
e We can apply the same theorem to directly
minimize if.
Theorem: Optimal Gibbs Risk-Temperature

V24 272

Bagr = arg mBinIEpB(dX) [R(c, X)] = e



Discrepancy: % p, and Big
e The elPA gives

Y

Berpa = o1+ 72
e The expected Gibbs risk is minimized at

o /2 + 272

Ber = o
o(1+4~?)

e They related only via signal-to-noise ratio:

e 2
Aﬁ*GR - 1 + %
eLPA +7




Finally

Large Disordered Systems

Tuning 3
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Overview and Outlook

Gibbs Algorithm

Alge — Large Disordered Systems
Motivation e mm e —— - ———
Helmholtz Free Energy ‘In Vitro’ Problem: \|
b% _ Motivation ! SMBP |
C A — 1
— ﬂ Jim Elog Z(8, X) = 1 ws_min STWiy
1 S
_ | ! :
i : = ;
Tuning 3 1 'l
Motivation :::::::::i:::\
5025 underiting 3~ 2 near-optimal - 195: overfting 1 Main Result 3
i 1 4
— Elogz] _ [ 1482 p< )
X% :HIL“L ‘{ ﬁ‘,\f B> 221
E ALt b
s> T B "

Maximize Expected Log-Posterior Agreement eLPA)I 1 Mmlmlze Average Gibbs RISk :

Ex log(scors

0 BiLpa = argmaxcLPA(B)
]

NeEz

T o+

R

Ey, xRl X)] = — L Ex log 2(5, X)

1
. 1
1 . & 1
. Bér = arg "gn]Eﬁ/s(c\X)[R(c' X)] 1

1
: _\2+27 1
E a(1+9%) 1




More for Discussion: See Appendix

Uniform 7-Approximation
Motivation

ﬁ—»c

'q Gibbs Algorithm

Motivation

~

Large Disordered Systems

Motivation

Helmholfz free Energy

Jlim ElogZ(8,X) =7

D

Tuning ¥

ETH Zurich

'
Brpen = arg: axcLPAH)Y
'

_VIEE
o4

By x{Re X)) =~ x 08 2(3,X)

B =ang minEy, ) [R(6, X))

PR o ——

\

‘In Vitro' Problem:
Lawler QAP

YN,

arg min = 37 Qusint ety

Ad-Hoc Correction
Conjecture

m EREZ(8.X)] _ [1+0* e

23 afavE Az L2

_ [ExVarpRie.X) _ [ExVarRie. X)
=\ EpVarxRie. X) No?

t-Step Uniform

onskiy
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Appendix: Entropy and Free Energy

Zpﬁ ) log ps(c
10g Z (5) Eps(e)[12(C)]
©
=log Z(p Z /BR e

= log Z(5) — /B%IOgZ(ﬁ).



Appendix: Proof Outline - |

N . " Compute
e Infroduce “solution overlap” D: dependencies
average intersection of two bisections

e D is key to understand dependencies
(remember we are no REM!)

Lemma 1
The following holds

Erand choice D = O(d4/n)'



Appendix: Proof Outline - |l

e Infroduce event A: happens when 7 is
closetoEZ,i.e. A:={Z > eEZ}

Compute .

e Goalisto Compufe ]ID(A) dependencies
FOCT 2 Si(;Z close to EZ"")
P(A) can be bounded by VarZ via vart
Chebychev.

Lemma 3 (Buhmann et al., 2014)

VarZ can be asymptotically
GpprOXimGTed ViO Erc‘nd ChoiceD:

VarZ ~ (EZ)2 (0252Erond choiceD) .



Appendix: Proof Outline - I

e Break Elog Z into

Compute
dependencies
Elog Z = Ellog Z | A] - P(A) + Ellog Z1(A)] 1
> (logEZ + log €)P(A) + Ellog Z1(A)] P(*zciose o E2')
Var Z
Fact4
Can expand log EZ via Taylor expansion Breaking
(used assumptions of Theorem) and I08L e
bound P(A) from previous.

Fact 5
E[log Z1(A)]: enough to bound loosely



Appendix: Proof Outline -

o Finally, the right choice of e for two
regimes of  gives the phase transition
in lower bound

lim ’
n—oo

Eflog Z] +--- 1A+5;, s
fov2,  p
e The same phase fransition happens

for upper bound, — easier to prove
(no need to compute dependencies)

[k

<
>

Compute
dependencies

P(*Z close to EZ"")
via
Var Z

Breaking
Elog Z
into two cond'’s

Final bounding
via adjusting
parameter



Infuition: Informativeness vs Robustness

Data Solving
Inputs  (Approximating

Optimal Solutions
Approx. Sets)
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Intuition: Informativeness vs Robustness

Data Solving
Inputs  (Approximating)

sing )

Extracts more information from input.
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Intuition: Informativeness vs Robustness

Data Solving Optimal Solutions
Inputs  (Approximating) X.. Sets)

X! — R(c, X')
P(XK x" - R(c,X")

XM - R(c’ X”’)

Increasing g (decreasing ~)
Extracts more information from input.



Intuition: Informativeness vs Robustness

Data Solving Optimal Solutions
Inputs  (Approximating) (Approx. Sets)

X! — R(c, X') /—\@

P(XK x" - R(c,X")

XM - R(c’ X”’)

Increasing g (decreasing ~)
Extracts more information from input.



Intuition: Informativeness vs Robustness

Data Solving Optimal Solutions
Inputs  (Approximating) (Approx. Sets)

X! — R(c, X') /\@

P(X)X x - R(e, X") /_\’@

X7 -Re.X") T @

Increasing g (decreasing ~)
Extracts more information from input.



Intuition: Informativeness vs Robustness

Data Solving Optimal Solutions
Inputs  (Approximating) (Approx. Sets)

X! — R(c, X') TS

P(XK x"-R(c,X") " e

XM - R(c’ X”’) _— °

Increasing g (decreasing ~)
Extracts more information from input.



Appendix: Free Energy Conjecture

Conjecture 5.1. Consider a class of combinatorial optimization problems complying
with Common Theorem Setting, weights W; having mean u and variance o®. Then
the free energy satisfies

(5.144)

n—o0 logm

i Elog Z(8.X)] + Buy/NTogm. _ {1+a2 L]
p B

S

o ExVarpR(c,X)  |ExVar.R(c,X)
o EDVEI)(R(C,X) B No?
Statement 5.1. For sMBP and Lawler QAP, Conjecture 5.1 turns into the proven
asymptotics, since o = 1.



Appendix: Replica Trick

1nZ=limZ —1

n—0 n




Appendix: Various Posteriors
Example (Giblbs Posterior)

B Bt 8 X — exp(—pBR(c, X))
PN = S o (CAR(E X))

pg(c|X)
T
OpTiTrre
|

solutions ¢

Example (Bounded-Support Uniform)

ps(c|X) = Uniform(C, (X))
where C., is y-approximation set:

pg(c|X)

Cy(X):={ceC|R(c,X)-R(c", X) <~}

solutions ¢



pg(c|X)

Appendix: Various Posteriors
Example (Giblbs Posterior)

T T

imal ¢+

>

solutions ¢

ps(c|X) =

exp( BR(c, X)

)
> ecc exp(=BR(¢ X))

Picture:  is decreasing.

Example (Bounded-Support Uniform)

pg(c|X)

T

4

| _ _optima 4]4 -

solutions ¢

ps(clX)

= Uniform(C, (X))

where C., is y-approximation set:

0,(X)

={ceC ’ R(e,X)—R(c", X) <~}

Picture: v is increasing.



pg(c|X)

Appendix: Various Posteriors
Example (Giblbs Posterior)

solutions ¢

exp( BR(c X)
> sec X (—AR(E X))

Picture:  is decreasing.

ps(c|X) =

Example (Bounded-Support Uniform)

pg(c|X)

ogtimal ¢+

solutions ¢

ps(c|X) = Uniform(C, (X))
where C., is y-approximation set:

Cy(X):={ceC|R(c,X)-R(c", X) <~}

Picture: v is increasing.



Example (Giblbs Posterior)

pg(c|X)

Appendix: Various Posteriors

_|optimal et

O

)

solutions ¢

ps(c|X) =

exp( BR(c, X)

)
> ecc exp(=BR(¢ X))

Picture:  is decreasing.

Example (Bounded-Support Uniform)

pg(c|X)

solutions ¢

ps(clX)

= Uniform(C, (X))

where C., is y-approximation set:

Cy(X):={ce

C|R(c,X)—R(c", X) <7}

Picture: v is increasing.



Appendix: Shannon Coding — |

add
one digit
noise digit,

Sent: 000 Received: 010

digit,

digit,

(a) High rate (Rcoae = 1), but no way to correct the error (red: sent and
received codes).



Appendix: Shannon Coding - |l

added
Sent: 000=()  one digit Received: 010= ()

digit, oL noise digit,

digit,

(b) Lower rate (Rcode = 1/3), correcting one digit error (red: sent and received
codes).

Figure 3.3 Dealing with one digit error. Case (a) is high rate option with eight codebook
vectors, leading to a low error-correcting capacity (in fact, no error can be tolerated). Case
(b) is lower rate option with two codebook vectors leading to a higher error-correcting
capacity (one digit error can be tolerated, two digits not).



Appendix: Coding Capacity - |

This is receive
due to noise

(a) (b)

¢ ° .
7 c °
% .
?
() (d)

Figure 3.4 Process of correct decoding by approximation sets in the solution space: (a)
X' is set and sender sends 74; (b) due to noise which replaces X’ by X”, all the minimizers
move around (red to blue) in the solution space; (c) the received solution is surrounded by
its approximation set (blue) and overlaps are considered; (d) decoded solution (dark red)
happens to be 74 which was initially sent (correct decoding).



Appendix: Coding Capacity —

° L] ° L]

L] ° L] °
e © ° o © °
L] L]

(] L] L]
(b) (c)

Figure 3.5 Decreased v and increased code rate leads to incorrect decoding: (a) same
setting (i.e. same noise) as in Figure 3.4, but added more codebook vectors; (b) due to
noise which replaces X’ by X", all the minimizers move around (red to blue) in the solution
space, (c) decoded solution (dark red) happens to wrong (incorrect decoding).



Appendix: ASC Derivation - |
Before we proceed, we will denote the intersection (3.15) as follows:
ACT = Cy(1 0 X") N Cy(Tsend © X"). (3.18)

Due to the union bound, it holds that

P(7 # TeenalTsena) < Y P(JACT| > |ACT*"| | Tuona), (3.19)
T€T

i.e. for decoding error to occur, one has to encounter an approximation set which is
yielded by a wrong transformation, but happens to be closer to the received approx-
imation set (this is illustrated in Figure 3.5(c)). The last bound can be rewritten via
the indicator function:

P(7 # Toend|Tsend) < D Epa [I{|ACT| > |ACT*|} | Tuend), (3.20)

TeT

where the expectation is taken w.r.t. the problem generation process X', X" ~
PG(+|X°). We further utilize the monotonicity of log function:

1{|AC]| > |ACT=[} = 1{log|AC]| > log |ACT="]} (3.21)



Appendix: ASC Derivation - |

and the fact that 1{z > 0} < exp(z) to come to the following:

IC (X 1€ (X))

22
mracy %

Epc(1{IACT| > |Acy=4]}

Tsend) <

where the product in the nominator comes from the fact that, under our generation
process, the data instances X’ and X" are independent given X0, see (3.8).

In the spirit of Shannon (1948), we use the random coding argument here: all the
7 are identically distributed and independent, hence the above can be rewritten:

]P(? 7é Tsenlesend) < (|T| - 1) exp(_l'y('rsendy?))a (323)

where

T| |ACTsend
[T [AC=] ) (3.24)

I(Tend, 7) = Elog (W



Appendix: Theorem elPA Full

Theorem: elLPA

As previously, edge weights mutually independent
within any given solufion; have mean . and variance
a2, Assume then additive noise § X', §X” with mean 0,
and variance &2, all the sets of the same size. Let

v = /o be noise-to-signal rafio. Then, eLPA safisfies

eLPA(X', X"

n—00 logm
(Bo)?,
n(B) = { Bove/A+272 - (Bo)?(1+72) - 1,
Bov2(VA+ 292 - 2¢/1+72) + 1,

-~

n(B)




Appendix: v-Similarity Approach

Noise Level Noise Level

(a) 5% of solutions are stable. (b) 10% of solutions are stable.

obabil
o
3

g
303
02
01

Noise Level Noise Level

(c) 20% of solutions are stable. (d) 50% of solutions are stable.



Appendix: Gibbs Similarity Approach

oint Minimizer

B

ibbs-Similarity

[} 2 4 6 8 10 [ 2 4 6 8 10
Noise Level Noise Level

(a) 5% of solutions are stable. (b) 10% of solutions are stable.

Figure 3.11 Gibbs relaxation shows almost the same performance. Experimental results
where 5% (a) and 10% (b). Model and setting are the same as in Section 3.6.



Appendix: Estimate of Similarity — |

Theorem 3.5. Let v > 0, V = |[C,(X") N Cy(X")], W = [C,(X")| - |C,(X")], m be
the minimum cost of a solution in both X' and X" (i.e., the calibrating assumption
is satisfied), and F,s and F, denote the cumulative density functions of the stable and
the unstable solutions, respectively, evaluated at m + «y. Then, the expected similar-
ity (3.47) can be approzimated by the estimated similarity

(3.50)

SEXP 3, =l ( E[V] Cov(V,W) & Var[W lE[V])

EW]  EW] Ew]
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Figure 3.10 Average vs. estimated similarity for ou = 1 (a), and for ou = 5 (b).

relatively well, especially for larger values of . Although the discrepancy grows with
the noise (which is natural due to the Taylor expansion used in the proof), probably
the most important thing to note is that the positions of the v* computed based on
S, and 5., remain the same.
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4.4.3 Algorithmic ASC Score and Optimal Stopping
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Figure 4.4 Gaussian noise model: information content
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Figure 4.5 Gaussian noise model: localization error
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Figure 4.7 Gaussian noise model: stepwise algorithmic information defined in (4.6) (¢ =
48)
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